LATE TERTIARY MARSUPIALS FRom SOUTH AUSTRALIA

By R. A. Stirton (Museum of Paleontolocy, University of California)

Fig. 1-11

INTIRODUCTION.

In 1953 Richard H. Tedford and R. A. Stirton received Fulbright awards to search for Tertiary marsnpials and monotremes in South Australia. Tertiary mammalian remains have turned up from time to time on the mainland of Australia but the stratigraphy and in many instances the cxact localities of these important discoveries have not been adequately recorded.

Some fossils now thought to be Pleistocene are surely Pliocene and others may be older. This is particularly true of some of the specimens suid to have come from the Darling Downs area in Queensland. Also during the past few years Edhnund D. Gill, of the National Museum, Melboume, has been stressing an earlicr age for some of the fossils from Victoria. Four of his marsupial specimens from marine formations should be helpful in establishing a correlation between continental and marine formations.

Our 1953 expedition was a co-operative project between the South Australian Muscmm, the Department of Geology of the Thiversity of Adelaide, and the Museum of Palcontology of the University of California. Those who actively participated in different phases of the field work were Norman B. Tindale, Paul F. Lawson, Geoffrey D. Woodard, Harold C. Reynolds, Tedford and Stirton. Though we worked in human cultural levels at Lake Menindee and in the Diprotodon locality at Lake Callaboma, our prime objective was to locate concentrations of Tertiary mammals to initiate work on the continental stratigraphy of Australia.

Toward the end of onr last trip in the interior Woodard diseovered a concentration of late Tertiary mammalian materials in a saudy channel deposit along the edge of Lake Palankarinna east of Lake Eyre. In the limited time available we collected from that site a series of macropodid jaws, teeth and limb bones, parts of two kinds of diprotodonts, a fragmentary bandicoot mandible as well as numerous crocodilian and chelonian fragments, telenst bones, lung fish teeth and crayfish gastroliths (Stirton and Woodard, 1954).

This report gives preliminary deseriptions of the mammals and is not a comprehensive faunal report. We hope to secure a more varied faunal representation and better preserved materials after we opell a quarry at the Wondard loeality in July, 1954.

ACKNOWLEDGMENTS.

We are grateful to Sir Douglas Mawson, Professor A. R. Alderman, Mr. Herbert, M. Hale, Mr. C. Warren Bonython and our many other Austaalian friends without whose help and encouragement this project would have been impossible. We also wish to express our appreciation for the Fulbright awards, to the Associates in Tropical Biogeography at the University of California and others who helped to make this work possible. Dr. A. T. Hopwood, of the British Museum of Natural History, kiudly placed at the author's disposal Owen's types and generously took much of his time in discussing his ideas on some of these specimens. Mr. and Mrs. D. J. Oldficld, of Etadunna Station, were most hospitable and helped us in many ways, Mr. Jack Stewart, of the Electricity Trust Company at Leigh Creek, gave us invaluable assistance and suggestions with our transportation problems. The illustrations were prepared hy Mr. Owen J. Poe, staff artist in our Museum. All measurements are in millimeters.

TYPE, LOCALITY AND AGE OF THE PALANKARINNA FAU.NA.

The Woodard loeality where the fossil bones were found is a grayish sandy chamel deposit with some unconsolidated ferruginous concentrations ranging from one-fourth of au inch to two inches in diameter. Gypsum oecurs throughout the beds but most if not all of it is secoudary in origin. These channel kands were laid down in a formation composed primarily of greenish-blue and red gypsiferous clays with a basal conglomerate derived from the Durierust chert. The chanuel sands are 35 fect above the basal conglomerate. The maximum thickness of the formation where the channel sands occur is 72 feet, though the total thickness may be greater.

The exposures are along the west side of Lake Palankarinna, east of Lake Eyre; 18 miles S. $75^{\circ} \mathrm{W}$. of Etadunna Station homestead. Military grid efference 656431, ordinance sheet Marree, South Australia, H54/1.2.5.6, zones 5 and 6, first edition 1942, seale $1: 506880$. U.C. locality V5367 (Fig. 1).

Age of the fauna is diffeult if not impossible to determine aecurately at this time. Perhaps the best key to an age is the fragmentary notothere (Fig. G) that seems elosely related but more advanced than a specimen in the National Musewm at Melbourne. The Victorian specimen came from the Samhinuham sands ("Cheltenhamian stage" of Singleton, 1941) at Beaumaris. Singleton (1941), Gill (.1950). and Glaessner (1951) refer this "stacre" to the fate Mioene, and Crespin (oral communication) ealls it early Pliocene. The Palankarimut fauna therefore has been referred to the carly or, possibly, middle Pliocene.

Fig. 1. Map showing Woodard Locality at Iake Palankarinna east of Lake Eyre, South Australia.

PALANKARINNA FAUNA-WOODARD LOCAIITYY.

Family PERAMELIDAE.

The first Tertiary fossil of a bandicoot was found by Mr. Tedford on July 30,1953 , when we were opening the Palankarimna quarry. Unfortunately it was in the weathered zone near the surface and consequently was badly shattered.

> Genus Ischnodon (1) nov.

Type of genotypic species. Ischnodon australis sp. nov.
The diagnostic characters of the genus are those of the genotypic speeies until other species have been described.
(1) しủzvós, thin; ỏscuv= ȯסoús, tooth.

Ischnodon australis sp. nov.

IIolotype. Most of anterior half of right mandible with posterior edge of canine alveolus, P_{1-2} and M_{1-2} in place. P_{3} missing from alveolus, M_{2} with erack across talonid resulting in loss of posterolingual corner (Fig. 2). U.C. No. 44380.

Generic diagnosis. Horizontal ramus slender; premolar thin transversely ($P_{1}=1 \cdot 1 ; P_{2}=1 \cdot 6$), with long gently declining crest from anteromedian cusp) to talonid. Paraconid and hypoconulid reduced on molars; talonid as high as trigonid; height from base of enamel below metacouid- $\mathrm{M}_{1}=2 \cdot 0 ; \mathrm{M}_{2}=2 \cdot 1$; stylar cusp at anterior base of hypoconid of M_{1}.

Description.

Mandible. Horizontal ramus evidently nearly straight, perhaps with slight convevity of lower border below molars; depth of mandible below $\mathrm{P}_{1}-5 \cdot 4$, below

ONE 1 NCH

Fig. -. Ischnoton australis, Stirton, n. gen. and n. sp., holotype, No. 44380; Woodard Locality V5367, T'alankarinna fana; Etahluna formation. Most of anterior half of right mandible with nosterior edge of canine abeolus, P_{1-2}, alvedus for P_{3}, and $\mathrm{M}_{1}-\mathrm{Ma}_{2}$. Oedusal and labial views. Four times matural size.
anterior cdge of $\mathrm{I}_{1}-7 \cdot 0$, transverse thictness below $\mathrm{M}_{1}-4 \cdot 9$; mental foramen bolow P_{1}. Horizontal ramus slender, evidently indicative of long uarrow-faced animal.

Tecth. Posterior adge of alveolus ot eanine preserved; diastem between C. and $T_{1}-2 \cdot 0 ; P_{1}$ with anteromedian cusp 1.9 high; no tiny ensp at anterior end; loug gently derlining talonid without cusp; straight; very narrow-1•1; length-a•6. Diastem between P_{1} and $P_{2}-1 \cdot 2$. P_{2} with anteromedian cusp $2 \cdot 3$ bigh; no tiny "usp at anterior end; long gently declining talonid with posterior styhar cusp, outline straight lingually and eonvex labially; wider than $P_{1}-1 \cdot 6$; length-4•1. P_{3} missing. Distance between P_{2} and $\mathrm{M}_{1}-3 \cdot 5$. Molars basically tuberculosectorial but with talonid as high as trigonid: M_{1} tritmgnlar in outline, lingual edge straight, Iabial edge tapers from posterolabial corner to anterolingnal coruer ; paralophid and paracouid present ; paraeonid not in line with metaconid and entoconid, paraconid separated from metacond by distinet metaffexid; no anterior ringuhm; metaconid and entoconid equal in size; hypocomulid vestigial ; swall stylar cusp at anterior base of protoconid; length 4.1; width across trigonicl-2.5, across talonid-3.0; height of metaconid $2 \cdot 0$. M_{2} differs from MI_{1} in liss pronounced triangula outline; paraeonid redneed ; paralophid closely appressed to protolophid; mrominent anterior cingulum with stylar cusp at anterior base of protocond ; larger size, length-4.2; width aeross trigonid-3-2, across talonid-4•5; height of metaconid-2•1.

Compurisoms, The exatet relationships of the l'alankarima bandicont cannot be detemined from the fragmentary speemen at hand. Nevertheless there are leatures in the teeth that suggest affinitios with living genera. The long gently dedining erest from the anteromedian casp to the talonid on P_{1} and P_{2}, and the rednction of the paraconid and the hypoconulid on the molars are sugsestive of affinities with the bilbises, On the ot bor haml, the pattern and height. of crown in the molars are mueh like the features seen in Thylucis Thingen ($=1$ snödon Desmarest), but the presence of the paraconid and the hypoconulid, thongh reduserl, may be evidence of a remote relationship to both Thylucis and Pernmeles. The characters displayed in this specimen seen to indicate that the Palankama animals were nearer to bilbies than to the other genera of the Peramelidac.

Choeropus evidently represents another apecialized form related most. elosely to Peramedes. The premblars in the Palankrima specimen are relatively and actarlly longer and ane relatively shorter crowned than in Chooropus. Furthermore there are no diastems between the premolars of Chooromus. Other differences are reflected in the molars; thoneh considerably larger they are relatively
mach lower crowned than in the pig-footed handicont. The paraconids and hypoconulids, also, are more rednced. Chooropus is a much smaller animal. The fossil form may be ancestral (but probelly is not) to bilbies. If it is in a direct ancestral position the bilbies have experienced considerable evolntion in their dentition, esperially in becoming higher erowned and in the loss of the paraconid, since the Palankarimna fama existed in the area east of Lake Eyre.

Family MACROPODIDAE.

Macropodid remains were more nmmerous at the Palankarimas site than all the other fossils combined. Even in the limited time available for collecting on our first trip to the locality we found a representative of every tooth both permancht and deciduons. Eventually we should have an excellent series for a study of variation in the population.

This new grenns and species is recognized as a member of the Macropodinae. Detailed comparisons with other genera in the subfanily have not been completed for this preliminary report.

$$
\text { Genus l'rionotemnus }{ }^{(2)} \text { nov. }
$$

Type of genotypic speries. Prionotemmus palankarimious sp. nov. (3)
The diagnostic characters of the genus are those of the genotypic species mutil other species have been described.

Prionotemntis palankirinniolis sp. nov.

Hololype. Right mandible with $\mathrm{P}_{3}-\mathrm{M}_{4}$ in place, most of anole, asending ramus, part of symphysis and incisor missing (Fig. 3), U.6. No. 44381.

Paratypes. Left maxillary with $\mathrm{P}^{3}-\mathrm{M}^{-1}$, U.C. No, 44382 (Fig. 4). Left maxillary with $\mathrm{P}^{2}, ~ D P^{n}, \mathrm{M}^{1}-\mathrm{M}^{3}$ in place, M^{4} still inbeded in the maxillary, U.O. No. 44884. Left mandible with $\mathrm{P}_{3}-\mathrm{M}_{3}$ in place, M_{4} ennpty; most of angle, asecoding ramus, part of symphysis and incisor missing, IT.C. No. 44385. fight mandible with $\mathrm{P}_{: 3}-\mathrm{M}_{4}$ in place: most of angle, part of ascending and incisor wissing, U.C. No. f4386. Left mandible with $\mathrm{P}_{\mathrm{a}}-\mathrm{M}_{4}$ in place; angle, part of ascending ramms, symplysis and ineisor missing, U.C. No. 44387. Part of right mandible with M_{3-4} in place; front half broken off, angle nearly complete, most of ascending ramms missing, U.C. No. 44:88. Part of left mandible with $P_{2} D_{3} M_{1-2}$ in place, M_{3} still embedded in the maxillary, T.C. No. 44839. Right metatarsal IV and associated phalanges, U.C. No. 44383 (Fig. 5). Right

[^0]P3, U.C. No. 44390. Composite upper incisors, U.C. No. 44391 . Left P'2, U.C. No. 44392. Symplysis of left mandible, U.C. No. 44393. Left lower incisor, U.C. No. 44394 . Right P P , TIC. No. 44395, left DP 3, C.C. No. 44396.

Fig. 3. Prionotemnus palankarimiens, Stirton, n. gen, and n. sp., holotypt, Nu. 44381; Woodaral Locality V5367, Palankarinnt fanas; Etatunua formation. Right mandible with $\mathrm{P}_{3}-\mathrm{M}_{4}$; noost of augle, ascending romus, part of symphysis and incisor missing. Ocelusal (A) and labial (B) views. Natural size.

Generic Diagnosis. Partial forward rotation of molars. P2 with no lingral basin: labial surface slightly convex and limgual surtace slightly concave. P_{3} with four labial and fonr lingual grooves. P^{3} not longer than M^{4} nor shorter than MI^{3}; P^{3} with narrow lingual shelf and narrow lingual basin; prominent. posterointernal cusp; tiny posterointernal fossette. M^{1} and M^{2} nearly quadrate. $\mathrm{I}^{2(-3)}$ with enamel extending upward from ventral border nearly halfway on lingual surface; relative proportions of T^{2} as in Wallabia but larger. Poz with long, deep and narrow anterior lingual groove and shorter wide posterior lingual groove divided into three parts by two short ridges in apical arca of unworn teeth. P_{3} ustally equal in length to M_{2}, sometimes as long as M_{3}; cusps of same beight on erest. DP:, with short erescentic lophid on anterior moiety: crest. extends anteriorly from midpoint of anterior crescentic lophid thence labially
(4) Assuming the primitive incisor formula in marsuials was $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}$ and that the remaining incisors in the Macropoilidae are $\frac{0 \cdot 9 \cdot 3+4 \cdot 0}{0 \cdot 5 \cdot 0 \cdot 0 \cdot 0}$.
downward and backward along basal part of anterior moicty forming shallow basin on anterolabial corncr of tooth. Lower molars longer than wide but relatively wider than in Wallabia and in Protemnodon.

Description.

Maxillary process opposite Mr^{3}, broad 11.5 mm . not rotated transversely, anterior lower border sharp not overturned posteriorly; infraorhital canal 24.0 mm . long, infraorbital foramen above M^{1}.

Teeth. $\mathrm{I}^{2(5)}$ not as elongate anteroposteriorly as I^{4}, crown of enamel much longer, Amensions of crown almost uniform thronghout, length of root variable from $10 \cdot 0$ to 20.0 mm , faint indication of groove slightly back of miclpoint on lateral surface; strongly decurved; ocelusion on posterior face.

Fig. 4. Prionotemnws palankarinnicus, stirton, n. gen, and n. sp., paratype No. 4438: ; Woodard Locality V5367, Palankarinna fauna; Etadmna formation. Left maxillary with P3-M4. Ocelusal (Λ) and labial (B) views. Natural size.
I^{3} smaller in all dimensions than I^{2} or $I^{ \pm}$, labial surface convex and smooth, ocelusal surface triangular in outline with posterior inflection, erown probably not more than 8.5 mm , root relatively long-9. 4 mm .

I ${ }^{4}$ crown elonqate but narrow, prominent groove and ridge slightly anterior of median labial position, ocelusal surface houk-shaped by anterior direction of inflection from lateral groove, crown short-9•1, root approximately $12 \cdot 0 \mathrm{~nm}$.
(5) This is assuming that I1 and 15 have been lost.

Space lectwath alvedus of T^{t} and maxillary-promaxillary sutare- $2 \cdot 0 \mathrm{~mm}$. [': two wide modian lathal grooves and two faintor median lingnal groave
 alung labial surfact, not shanply difiomutiated into cingulan; slight limenal
 cusp; interior and posterion mads of ersat only shighty elerated ahme midelle part; labial and lingual whes searly paratlel, labial surface slightly conver and limghal surfare shigltly eoncave, angulate anteriondy; two roots.
P^{3} not longer than M^{3} nor sharter than M^{2}, four labial grooves and four lingnal grooves; labial basal cingulum not continnous aromel postisolabial durne ; irregular lingual eimulnm forming narrow basal shelf and narrow lingnal basin; anterion and posterior ends of erest slighty higher than three interveining (msps prominent posterolingal ensp; tiny postromedinn fossetto; roplaces hoth P^{2} and D) ${ }^{3}{ }^{3}$ with west pushing up betweon their roots.

DP: molariform but with protoloph narrower than metaloud. All specimens too heavily worn to slow detailed gattem.

Tpuer Molars, (iradation in size from large to smatl in upper molar's M", $M^{1}, \mathrm{~N}^{2}, \mathrm{M}^{1}$; M^{3} and M^{4} nearly equal and somewhat oldangate; M^{4} and M^{2} warly quadrate, M^{3} and M^{4} more ulougate; metaloph of MA^{4} narrower than protoloph; frominent trenchant anterobsisal emgulum nearly as wide is protoloph, not sharply deflectad patinally from midpoint; no forelink; laphs arescentic in early stages of wear become less so as they wear down: midlink usually formed by spurs develoned from protoloph and from metaloph, eurved labially and posteriorly from protocone to middle of metalopla, envature less apparent in later stages of wenr, anterior and posterion spurs of midlink uswally finsed but sometimes not complete particularly in M^{3}; faint basal lingnal cingulum sometimes present on any of the uppor molars. Hindlink crescentic on $\mathrm{ML}^{1}, \mathrm{M}^{2}$ and asually on M^{3} joins at midpoint. with similar but less diatinet arest lrom metacone, extends to base of metacone on M^{4} and sometimes on M^{3}.

Mandible. Symphysial region only slightly upturned in lateroventral outline, not decumbent. Neutal foramen usually clongate and ovate, directed anturodorsally, near dinstemal west, distance anteriov to P_{3}, variable $(8 \cdot 4-18 \cdot 5)$. Edge of masseteric foramen between opening of posterior dental canal and roronoid fossa ubservalile in adult specimens with mandible in horizontal position at eyc level; mandibular ramus, tooth row, and symphysis nearly horizontal.

Ig limecolate; slightly enved from tip tor end of root in labial ontline: labial chamel surface and length of root about equal; enamel extends opward fron ventral border nearly halfway on linual surface; relative proportions as in Wallubia; lengtlo of diastem between F_{2} and C in one adult-36.9.

Pa long, deep and narrow anterior lingual groove; shorter wide posterior lingual groove, divided into three parts by two short ridges in apical area of morn teeth; a little over half as loug as P_{3}; apparently two median labial grooves (not olear because of woar in specimens at hand) ; no indication of basal cingnlum ; crest moderately serrate, of same height throughout s slightly consex labially, slightly concave lingually ; two roots ; no posterointermal eusp.
f_{3} four labial and four lingual short grooves; labial and lingual eingula not continnons anterionly or postriorly ; P_{3} usually equal in length to M_{2} sometimes as long as M_{3}; serrate crest, cusps of same height; posterior cousp thicker than those in front, slightly deflected lingmally; replaces both P_{2} and DP_{3} with erest directly below these teeth; anterior end sometimes turned downward from rotary pressure of molars behind.
DP_{3} submolariform; triangular ottline; anterior moiety with short erescentic lophid, posterior moiety bicuspid; cerest extends anteriorly from midpoint of anterior cresceutic lophid thence labially, downward and backward ahong basal part of anterior moicty forming shallow lateral basin on anterolabial comer of tooth; another short cingnlum axtends from anterior midpoint down to anterolingual corner; posterior eingulum; lophids comeeted by midlink.

Lower Molurs. Gradation in size of lower molars $\mathrm{M}_{4}, \mathrm{M}_{3}, \mathrm{M}_{2}, \mathrm{M}_{1}$; longer than wide; prominent auterior cingulum not equal to full width of tooth; lophids crescentic in early stages of wear become less so as they wear down; forelink curves slightly inward from grotoconid then straight forward to anterior cingnhom; midlink curves slightly inward from hyporonid then straight forward to middle base of protolophid, no spur extending posterior from protolophid; faint posterior eingulum; no labial or lingual cingula ; no hindlink.

Mutatasal IV-anterion sumface not eonspionously concex; posterior proxjmal half of shaft with wather sharp edge; outline of shaft above distal articulating surface ovate.

Measurements of Metatarsal، and Pealanges.

Romarks. P palankarinnicus differs from each of the nine species from Queensland described by De Vis (1895) under the gencric name Malamatru'us. The characters examined occur lonth in the molars and in the premolars, yet characters based on the same structures in onr series from the Woodard locality
are constant. Unfortunately neither the geographic location, the stratigraphic position, nor any indication of fanal assemblage information is available for Do Vis' specimens. This of course makes a detailed comparison seem rather futile, since characters that are stable in one species are not nevessarily stable in another. More than one of his types may come from one fauna. In some features the Palankarinna animals resemble the wallabies and in other characters they look like the speaies of Protemnorlen from the Pleistocene. Our form may approximate a common ancestral position to these two genera. The proportions of the limb bones are suggestive of the Macropodinac.

Family DIPROTODONTIDAE.

The relationships of the named genera of the Diprotodontidat are not yet. known. The smaller genera referred to the Nototherinae seem to belong to two or more distinct groups, but we do not have enongh information on the types and other specimens in muscum collections to determine the magnitude of these differences. Lack of information on the stratigraphic position of the fossils and on the associated mammatian famas has also been a serious handicap in interpreting their affinities. Nevertheless, certain characters sem worthy of comparison and comment at this time. It is hoped that additional discoveries in the near future will dear up the relationships of some of the named genera.

$$
\text { Gentis Menisocmphus }{ }^{(6)} \text { nov. }
$$

Type of genotypic species. Meniscolophus mawsoni(7) sp. nov.
The diagnostie characters of the gmos are those of the genotypie species until other speeics have been deseribed.

Meniscoloretus mawsoni sp. hov.

IIolotype. Mandibles with complete little worn dentition, aseending ramus and most of angle broken offi. Left naxillary ${ }^{(8)}$ fragment with M^{2} and M^{3} and a right M^{3} (Fig. 7, 8, 9). U.C. No, 44397.

Generic diagnosis. Incisors not markedly procumbent nor conspicuously grooved, not caniniform ; dorsal ontline of incisor slightly concave. Diastemal erest between I_{2} and P_{3} slightly convex. Posterior end of symphysis opposite anterior moiety of M_{1}. Length of $\mathrm{P}_{3}-17 \cdot 1$, right $\mathrm{P}_{3} 4.4$ greater than one-half

[^1]of length of M_{1}, left $P_{3} 6 \cdot 0$ greater than one-half leugth of $M_{1} ;$ no indication of ringutum on anterolabial comer of P_{3}. Length, width and height (of protoJophed from base of chamel below metaconid) of $\mathrm{M}_{4}=37 \cdot 1 \times 26 \cdot 3 \times 20 \cdot 9$. Lophids of molars shightly crescentic and slightly oblique, midlink not enteriug into crescentic outline of hypholophid; midlink extends straight forward down into median valtey from middle of labial haff of hypolophid. No paratophid. Posterior cingulum clevated sharply at midpoint, shallow somewhat widened trench botween eingulum and main body of tooth blocked by short low imterior directed lidge at that point. Prominent diagastric process and postdaugstric sulters on pustarion tower lomder of madible.

DEscription,

Aamliblu. Symplysial region normal, not spatuTate nor abruptly upturned; symphysial sulcus markedly U-shaped laterally, slightly convex :anteropostoriorly on lingual surface along symphysial suture, narrow (1.5 wide) deep groove along symphysial tine fades out $19 \cdot 0$ back of incisor alveolar border; ventral surface also with grooved sutural line, $39 \cdot 5$ this groove expands into clongate $(41 \cdot 7)$ relatively narrow $(10 \cdot 0)$ slightly depressed rugose area; subalveolaris fossa distinet; spina mentalis broken off; no torsus transversus; diastemal arest between incisor and Pa pitted and grooved; mental foramen ovate $3 \cdot 5$ vertieally and $5 \cdot 8$ anteroposteriorly, 27.5 below and $8 \cdot 3$ anterior to P_{3}. Lower border of ramus slightly convex between symphysial notch and diagastive process; diagastrie process prominent, pointed; long (80.0) pronomnced postdiagastric sulcus between dingastrie process and base of angle; angular fossa deep (approx. 16.0) and continues forward as shallower tepression $70 \cdot 0$ herma mostdiagastric process. Posterior angnlar surface nearly flat, $75+$ wide below condyle (broken eanot be measured accurately) ; only base of ascenting ramm preserved, antorior border opposite anterior moiety of M_{4}; postalveotar shelf hask of M_{4} t.riangular, 25.0 long , with postalvenlar ridge extending more or less minterrupted to postalycolar process at edge of postdental canal. Postdental canal $9 \cdot 0$ in liameter, $51 \cdot 0$ back of and on level of upper half of M_{4}, canal runs mader lathal boriler of tooth row: basal part of coronoid fossa $77 \cdot 0$ wide and 15.0 deep.

Loner tom. Diastem between incisons 6-0; incisors curved gently upwaral amblighty ontward, extends 37.0 out of alveolus; anteroventral and lahial surface of ineisor cuated with enamel, enamel extends $12 \cdot 0$ into alveolus, bower surface not grooved, upper latetal surface slightly grooved near contact with rxposed dentine surface, dorsal surface of dentine also slightly grooved noar lateral border; dentine exposed on imer and posterior surfaces, enamel oceurred
on these surfaces; thick root, reduces in size at lower end, open, not eompressed laterally, terminates about 20.0 back of and below mental foramen and below P_{3}; dental canal passes down and over labial side of open root.

Cheekteeth decrease in size from M_{4} to P_{3}, but M_{3} only slightly smaller than M_{4}; some cement in depressions of teeth.
P_{3} moderately worn, evidently with single cusp, exposed dentine roughly triangular, expanded eingulum extending from posterolingual eorner to point between roots on labial side, shellow somewhat widened trench between cingulum and main body of tooth, no indication of anterior cingnlum; Jingual edge straight; no indication of vertical lateral grooves dividing tooth into anturior and posterior moieties; labial enamel 2.0 thick, lingual enamel 0.5 thick; both roots carved pusteriorly.

Pattern of molars alike except shelf-like cingulum structure across opening of median valley more prominent on lingual side of M_{3} and M_{4} and more pronounced on labial side of M_{1} and Mas_{2}. Lophids slightly creseentic and slightly oblique; protolophid not higher than hypolophid. Anterior and posterior moieties about equal in width except on M_{1} where anterior moiety is a bit narrower ; posterior moieties on $\mathrm{M}_{2}, \mathrm{M}_{3}$ and M_{4} as wide or slightly wider than anterior moieties; posterior moieties longer anteroposteriorly than anterior moictics on all of the molars. Median valleys sharply V-shaped. Posterior cingulum elevated sharply but not discontinuous at midpoint, shallow somewhat widened trench between posterior eingulum and main body of tooth blocked by low erest at that point. Midlink extends straight forward down into median valley from labial side of hypholophid. Cingmla discontimous opposite lahial and lingual surfaces of protolophids and hypolophids, tend to aseend but fades out on these surfaces.

Upper teath. Lopbs crescentic and slightly oblique; anterior moiety wider than posterior moiety; median valleys sharply V-shaped; only slight elevation in area of midink; wide anterior cingulum, without labial eusp; short cingula across lingual and labial openings of median valleys; wide posterior hasal cingrula. Posterior edge of jugal areh opposite anterior edge of M^{3}.

Measurements.

Length from tip of incisor to posterior angnlar surface 350.0
Length from tip of incisor to entry of dental canal 290.7
Depth of ramus below anterior alventus of M_{1}. $70 \cdot 0$
Deptly of ramus below anterior alveolus of M_{3}. $61 \cdot 0$
Thiekness of ramus below M_{1}. 33.5
Length of symplysis $113 \cdot 0$
Depth of symphysis at midline opposite mental foramen 47.8
Diastem between ineisor and P_{3}.. 62.9

Length of teeth measured at middle and on left tooth row.

$$
\begin{aligned}
& \mathrm{P}_{3}-\mathrm{M}_{4}=150 \cdot 3 ; \mathrm{P}_{3}-\mathrm{M}_{3}=113 \cdot 4 ; \mathrm{P}_{3}-\mathrm{M}_{2}=77 \cdot 6 ; \\
& \mathrm{P}_{3}-\mathrm{M}_{1}=46 \cdot 4 ; \mathrm{M}_{1}-\mathrm{M}_{4}=133 \cdot 4 ; \mathrm{M}_{1}-\mathrm{M}_{3}=96 \cdot 7 ; \\
& \mathrm{M}_{1}-\mathrm{M}_{2}=61 \cdot 0 ; \mathrm{M}_{2}-\mathrm{M}_{4}=103 \cdot 9 ; \mathrm{M}_{2}-\mathrm{M}_{3}=67 \cdot 9 ; \\
& \mathrm{M}_{3}-\mathrm{M}_{4}=72 \cdot 8 .
\end{aligned}
$$

Meclian length X width of anterior moiety X width of posterior moiety, except P_{3} which is measured across the middle.

$$
\begin{aligned}
& \mathrm{P}_{3}=17 \cdot 2 \times 13 \cdot 0 ; \mathrm{M}_{1}=69 \cdot 0 \times 20 \cdot 0 ; M_{2}=32 \cdot 4 \times 22 \cdot 8 ; \\
& \mathrm{M}_{3}=36 \cdot 4 \times 26 \cdot 0 ; M_{4}=37 \cdot 1 \times 26 \cdot 3 .
\end{aligned}
$$

Height of anterior lophid from base of enamel below metanonid of $\mathrm{M}_{ \pm} \quad 20.9$ Length M2-ML. 69•1 Median length X width of anterior moiety X width of posterion moiety.

$$
\mathrm{M}^{2}=31 \cdot 6 \times 28 \cdot 0 \times 26 \cdot 4 \mathrm{M}^{3}=37 \cdot 0 \times 31 \cdot 1 \times 28 \cdot 6
$$

Comparison. The generic narue Nototherium is second only to Diprotodon in its frequency in the literature. Iromically thongh, in all probability the specific characters in the type of the genotypic species N, mitcholli Owen (1845, p. 223, pls. 3-4) from the "alluvial or newer tertiary deposits in the bed of the Condamine River, west of Moreton Bay," ean never be recognized. If this proves to be true the name mitchellimust be set aside as a nomen dhbium.(a) or nomen vamme (9). It seems mwise to treat the generie name in a like manner as loner as there is a possibility of recoguzing generie affinities of the other species with the type of the genotypie species. (10)

Owen's type of Nototherium is the posterion part of a left mandible with M_{3} and M_{8} in place hat nearly all of the enamel on the teeth has been shattered and lost. The posterior lowe border of the horizontal ramus is complete but the aseending ranus is broken ofl. Unfortmately the teeth are so badly broken an accurate determination of affinities from them will be extremely diffieult. In comparing the type with other specimens in the Tritish Museum of Natural History it was found to be more like specineu No. 43523 (Owen, 1877, pp. 289 $290, \mathrm{pl}$. NLV) than any other specimen with which it was compared. Some enamel still preserved in the median valley of M_{3} in the trpe is indicative of a V-shaped valley ats in the specimen mentioned above. This feature is also found in the type of Euryzygoma Auncose (De Vis), 1887. Furyzygoma agrees with the British Museum speemen No. 43523 in that the midink on the molars is
(a) Evidently these terms are synonymons.
(10) Thus the upinion expressed by Savage (1951, p. 260, footnote 7) is followed in his treatment of the genus Camelops. It is appreciated though that the ease of Netotherinm differs from that of Camelopsin that I am still mot certain that the genus ean be recognized in Oren's type.
continuous as a labial curvature of the hypolophid. Furthermore, Eurysygoma resembles Ower's type and the British Mnseum specimen No. 43523 in the absence of a pronounced diagastric process and postdiagastric sulcus. N. mitohelli differs further from Meniscolophus in its postalveolar process being $40 \cdot 0$ below the opening of the postdental canal. In both Euryzygoma and the referred Nototherium, the lophids are more obliquely crescentic than in Meniscolophus. In addition Meniscolophus differs from both of these genera in the anteroposterior direction of the midlink, and in the midpoint elevation of the posterior cingulum. V-shaped median valleys are found in all of these genera. Euryzygoma differs from Meniscolophus in its larger size, more procumbent and more pronounced lateral grooved incisors. Other features of distinction in Euryzyyoma are seen in the posterior end of the symphysis being opposite the anterion end of M_{2}, in the length of P_{3} which is one-half the length of M_{1}, and in the protolophid being $5 \cdot 0$ higher than on M_{4} in Meniscolophus.

Both Euowenia robusta De Vis, 1891, and Ewowenia grata (De Vis), 1887, show marked resemblances to Meniscolophus in the construction of the molars, in the presence of a diagastric process and a diagastric sulcus. They differ in the shape of the symphysis and in the outline and divection of the incisors. There also are minor differences in the molar patterns. The symphysis in robusta is long ($197 \cdot 2$), narrow (51.8 between mental foramina), slightly upturned, and with the symphysial notch below M_{2}. On the other hand the symphysis is much shorter in grata ($116 \cdot 8$), wider ($70 \cdot 1$ between mental foramina), abruptly upturned and with the symphysial notch below M_{1}.

I designate Euowenia robusta De Vis, 1891, as the genotypic species since De Vis did not refer to either species as the type of his new genus. The type specimens of these two species will be deseribed in detail at a later date by Jack T. Woods of the Queensland Museum.

Though the generic affinities of "Nototherium" victoriae, Owen, 1873, are not clear and it differs from Meniscolophus in several features it seems nearer to the Palankarinna genus than to the other genera and species. It differs from Meniscolophus as follows: posterior end of symphysis opposite middle of M_{2}. Length width and height (of protolophid from base of enamel below metaconids) of $\mathrm{M}_{4}=45 \cdot 3 \times 33 \cdot 5 \times 24 \cdot 6$ approx. Lophids transverse. Midlink not as prononnced but in same position. Diagastric prominence as long as postdiagastric sulcus. Postdental canal about on same level in relation to tooth row as in Meniscolophus, but separated from postalveolar shelf and postalveolar ridge by deep groove. Median valley not as sharply V-shaped. Shelf-like cingula strnctures across openings of median valleys of molars not prominent. Trench between posterior cingulum and main body of tooth not blocked by crest. Length $\mathrm{M}_{2}-\mathrm{M}_{4}=122 \cdot 0$.
"Nototherium" tasmanicum, Scott, 1911, seems to be close to " N." victoriae except in the position of the foramen of the postdental canal, which is high on the ascending ramus as in the type of " N " mitchelli.

Fig. 6. Diprotodont, No. 44398; Woodard Loeality V5367; Palankarinna fauna; Etadunna formation. Part of left maxillary with M1-M3. Occlusal view. One-third natural size.

Fig. 7. Meniscolophus mawsoni, Stirton, n. gen. and n. sp., Lolotype No, 44397. Woodard Locality V5367; Palankarinna fauna; Etadunna formation. Mandibles with little worn incisors and $\mathrm{P}_{8}-\mathrm{M}_{4}$, ascending ramus and most of angle broken off. Ocelusal (A) and labial (B) views. One-third natural size.
"Nototherium" watutense, Anderson, 1937, is represented by a very poor type specimen since only a fragment of M_{4} remains in part of the mandible. Nevertheless the presence of a diagastric process and a postdiagastric snleus give evidence of a mandibular outline, at least in that area, much like that in Meniscolophus. Though the tooth of a possible topotype from Surprise Creek, near Wau, New Guinea (Australian Masemm No. F41443), is much lower crowned and smaller than Meniscolophus, has median valleys not so narrow, has a much more complete anterior posterior and labial cingulum, but has slightly oblique lophids and midlinks, though not as prominent, in the same position as in Meniscolophus, " N." watutense is probably raferable to the gemus Meniseolophus.

It is not elear at this time to which of the smaller notutheres Diprotodon is most closely related. Tt is much larger, has a longer ermium and mandible, and the cheekteeth, though brachyodont, are both relatively and actually higher cromed. It shows a marked similarity to Meniscolophus in the diagastric proeess, in the postdiagastric sulens, the postalveolar ridge leading from the postalyeolar shelf to the postdental canal, but in other features it is not close. The large ineisors bave open roots; if root closure took place it. must have becu in the oldest individuals. On the other hand the area corered with enamel on the incisors is somewhat like that in Meniscolophus. The pattern of the molars in their transverse eresentic lophids, in the absence of midlinks, in the presence of eement both in the median valleys and on other surfaces of the molars, is quite different from Meniscolophus.

Some of the characters mentioned here may prove useful in an interpretation of phylogenetic relatiouships when we have more information on the Thertiary fossil record of the Diprotodontidae.

DIPROTODONT.

Four notothere specimens from Palankarima are dearly not referable to Homisolophus. These are the baek part of a left mandible with a well-worn M_{1} in place, U.C. No. 44401, a fragment of a left mandible with a moderatelyWorn M_{4} (Fig. 10) U.C. No. 44390 , a left maxillary fragment with $\mathrm{M}^{1}-\mathrm{M}^{3}$ moderately worn (Fig. 7), and a left M^{1} of a smaller individual U.C. No. 44400 (Fig. 11). The following characters indicate affinities with part of a maxillary from the marine Miocene near Beamaris, Victoria, but it is thonght that materials from Palankarima are not referable to the species from Victoria, though it may belong to the same genus.
lipper molars with protoloph transverse and with metaloph slightly oblique; anterior moiety wider than posterior moiety except on M^{1}; median valley wide; slight elevation of midink-like structure in median valley back of

Fig. 8. Meniscolophus mawsoni, Stirton, n. gen, and n. sp., holotype No. 44397, Woodard Locality V5367, Palankarinna fauna; Etadunna formation. Part of left maxillary with M^{2} and M3. Ocelusal (A) and labial (B) views. One-third natural size.

Fig. 9. Meniscolophus mawsoni, Stirton, n. gen. and u. sp., holotype No. 44397. Woodard Locality V5367; Palankarinna fama; Etaduma formation. Mandible. Ventral view. Out-third natural size.

Fig. 10. Diprotodont, No. 44397. Woodard Locality V5367; Palankarinua fauna; Etadunna formation. Right M_{4}. Labial (A) and ocelusal (B) views. One-third natural size.

Fig. 11. Diprotodont, No. 44400. Woodard Locality V5367; Palankarinaa fauna; Etadunna formation. Left M1. Labial (A) and occlusal (B) views. One-third natural size.
paracone; wide anterior cingulum with labial cusp; wide posterior cingulum with labial cusp; short cingulum across lingual opening of median valley; stylar cusp at posterior labial base of paracone, does not cross labial opening of middle valley. Posterior edge of jugal areh opposite middle of M^{3}.
M_{4} with transverse crescentic lophids; anterior cingulum less prominent than in upper molars; anterior moiety wider than posterior moiety; median
valley wide; slight elevation of cuamel in area of midlink; no indication of cingula aeross opening of median valley; posterior eingulun slightly elevated at midpoint; shallow trench between posterior cingnlum and main body of tooth not blocked by low crest at midpoint.

Lower mandibular outline like that in N. mitchelli.

Measurements.

No. 44398.

No. 44398.
Median length X width of anterior moiety X width posterior moiety $\mathrm{M}^{1}=81 \cdot 9 \times 27 \cdot 9 \times 28 \cdot 0 \mathrm{M}^{2}=37 \cdot 8 \times 33 \cdot 7 \times 31 \cdot 1 \quad \mathrm{M}^{3}=43 \cdot 4 \times 36 \cdot 1 \times 32 \cdot 4$
No. 44400.

$$
M^{1}=27 \cdot 4 \times 25 \cdot 8 \times 25 \cdot 6
$$

No. 44401.
Depth of ramus below anterior alveolus of $\mathrm{M}_{1}=79 \cdot 0$
No. 44397.
Median length X width of anterior moiety X width of posterior moiety $\mathrm{M}_{4}=43 \cdot 4 \times 32 \cdot 6 \times 29 \cdot 0$
Comparism. The Palankarinna form is larger than the largest specimen from New Guinea ($7 \cdot 0$ in the length of M_{4}) and almost twice as large as the Beammaris specimen, from Victoria ($15 \cdot 6$ difference in the length of M^{3}). Irrespective of the difference in size characters in the Palankarima maxillary seem to be foreshadowed in the Beaunaris form except in the following features.

Posterior moiety relatively narrower transversely; anterior cingulum with labial cusp less developed but distinct; no stylar cusp at posterior labial base of paracone; posterior edge of jugal arch apparently opposite anterior edge of M^{3}.

If, as the evidence seems to indicate, the specimen from Beaumaris is in or near the line of ancestry to the Palankarima diprotodont and the unit of the Sandringbam sands from which it came is late Miocene in age (Singleton, 1941; Gill, 1950; Glacssner, 1951) our fauna probably belongs in the early Pliocene. On the other hand, if the Beanmaris fossil is early Pliocene (Crespin, oral commmication) then our fauna could be middle Pliocene.

Unfortunately the specimens at hand offer meagre evidence for a generie diagnosis, though some of the features olscrved may be of generic magnitude. Nevertheless it seems expedient to await the results of another field season in anticipation of a more revealing type speeimen.

TEDFORD LOCALITY(11)

Famhly PHASCOLARCTIDAE.

Telford diseovered a fragment of a right maxillary of a koala-like aumal among framments of other vertehnates approximately 25 feet below the Woodard locality. The specimen contains the posterior border of the alveolus of e^{3}, the roots of $\mathrm{M}^{1}, \mathrm{M}^{2}$ with much of the enamel surfate and the immer edge broken away, part of the alveolus of M^{3}, and the base of the jngal arth.

Though the speemen shows a marked resemblance to Phascolarctos it differs in several features. Auteorbital fossa shallow; width of lase of jugal areh opposite $\mathrm{M}^{2}=6 \cdot 7$; enamel surface of molar eonspicnously erenelated; protocone and hypocone more creseentio; M^{2} as wide as long; length 6.3, width 6.3; ocelusal outline of M^{2} evidently more rounded.

This fossil is more closely related to the koala than to Psoudocheirus, Schoinohates or Ifmibelidens. It differs fuom "Fseudochirus (?)" notabilis(12) De Vis, 1889, from Freestone Creek, Queenshand, in the crenelated enamel surface of M^{2}, in that tooth beinis as wide as long, and in its more rounded outline. Perhaps additional discoveries at Lake Palankarma will clear up the relationships of this animal.

sUMmARY.

Late Tertiary vertebrate remains are reported trom the west side of Lake Palankarima bast of Lake Eyre, South Australia. The asscmblage is named Palankainna fanma, In aeeompanying notes the stratigraphie moit in which it oecurs has been deseribed as the Etaduma formation by G. D. Woodard. Locally the mammalian fossils are abnodant in a channel deposit called the Woodard loality. The age seems to be carly or midde Pliocene.

Preliminary deseriptions of the mammals include: PERAMELIDAEIschnorlon australis n. gen. and n. sp. ; PHASCOLARCTIDAE-phaseolaretid, speeimen not adequate for diagnosis (fown on the same level as the Woodard locality and in the Etadunaia formation); MACROPODIDAE-Prionotemnus palankarinnicus n. gen. and n. sp.; DIPROTODONTIDAE—Meniscolophus mawsoni n. gen. and n. sp.; diprotodont specimeus not adequate for diagnosis. Teleost, dipnoian, chelonian, crocoditian fragments and crayfish gastroliths also were found.

Ischnodon seems more closely related to the bilbies than to Perameles and Thylacis but in sone features it displays relationships with these genera. The

[^2]phasedaretid is clearly nearer to the koala than to Psemlocheims, Schomobates Hemibclidcus or Petropseudes. It also differs from "Pseutodheirus (i)" notubilis, De \is, 1889, in certain details. Prionotemnus has some characters in common with the wallabies and others that resmble Protemnodon. It may represent a proximity to a common ancestor of both genera. Meniscolophus and the unidentified notothere share characters with most of the proposed genera and species of the Nototherinae.

LITERATURE CITED

Auderson, C. (1937). Paleontologrical notes. Fossil marsupials from New Guinca. Rec. Anst. Mus., vol. 20, No. 2, pp. 73-87, pl. S.
De Vis, C. W. (1887). On a supposed new species of Nototherium; Proc. Limn. Soc. N.S.W., vol. 2, pp. 1065-1070, pl. 38.
De Vis, C. W. (1889), On the l'hatangistidae of the post-'lertiary period in Queensland. Proc. Roy. Soc. Queensland, vol. 6, pp. 105-114, pls. 4-5.
De Vis, C. W. (1895). A review of the fossil jaws of the Macropodidae in the Queensland Museum. Proc. Lim. Soc., N.S.W., vol. 10, pp. 75-133, pls. 14-18.
(iill, E. D. (1950). Nomenclature of certain 'lertiary sediments near Melbourne, Victoria. Proe. Roy. Soc., Victoria, vol. 63, pp. 16.5-170, Figs. 1-2, pl. 10.
Glaessner, M. F. (1951). Three foraminiforal zoncs in the Tertiary of Anstratia. Geol. Mras., vol. 88, pp. 273-283.
$O_{\text {ren }}$ R. (1845). On the extinct mammals of Australia. Rept. Brit. Assoc. Adv. Sci., for 1844, vol. 14, pp. $233-240$.
Owen, R. (1873). IV. On the fossil mammals of Anstralia-lart V. Genus Notothorium, Owen. Phil. Trans, Roy. Sor., London, vol. 162, pp. 41-8*, Figs. 1-2, pls. 2-11.
Savage, D. E. (1951). Late Cenoznie vertehrates of the San Francisco Bar region. Univ. Calif. Pnhl. Bull. Dept. Ceol. Sei., vol. 28, pp. 215-314, Figs. 1-51.
Scott, H. II. (1911). Nototherimm lamaniaum. Tasmanian Naturalist, vol. 2, No. 4, pp. 64-68, Figs. 1-5.
Singleton, F. A. (1941), The Tertiary genlogy of Australia. Proe. Roy. Soc., Victoria, vol, 53 , pp. 1-125, Figs. 1-15, pls. 1-3.
Stirton, R. A. and Woodard, G. D. (1954). Continental stratigraphy and late Tertiary marsupials in South Anstralia (abstract). Proc. (Ifol. Soc., Amer. (in press). Read March 12, 1954, Cordilleran Sec., Seattle, Wash.

[^0]: (2) Tphov, satw ; teprus, to wut (in reference to the premolars).
 (3) Namul for the type tauna it Lake Palankarinna.

[^1]:
 (7) Named for Sir Douglas Mawson, Professor emoritus, Department of Geologr, University of Alelaide.
 (8) Evisanty this belongs to the same individual as the mandible since the specimens whe found in proxinity in the quarry and since both upper and lower teeth are in the same stage of weatr.

[^2]: (11) Sce stratigraphic position under Eection on stratigraphy.
 (2n) This type is not referable to the genus Pseulocheirus, but is much closer to the koala.

